Boden im Labor

Was wird von Boden im Labor untersucht?
Wie interpretiere ich die Ergebniswerte?

Vor allem die Grünlandböden sind in Österreich – bewertet nach den RICHTLINIEN FÜR DIE SACHGERECHTE DÜNGUNG (2006) – meist sehr schlecht mit CAL-löslichem Phosphor versorgt.
Der Großteil der österreichischen Grünlandböden fällt in die Gehaltsklasse A (sehr niedrige Phosphor-Gehalte). Aus diesem Befund könnte man zunächst einmal einen erhöhten Phosphor-Düngerbedarf der meisten österreichischen Grünlandböden ableiten.
Andererseits sind auch Zweifel an der Eignung der CAL-Methode für die Ermittlung der „pflanzenverfügbaren“ Phosphor- und Kalium-Gehalte im Boden und der Richtigkeit der Gehaltsklassen-Einstufung berechtigt.

humose Feinerde des Oberbodens © Markus Danner
humose Feinerde des Oberbodens © Markus Danner

Folgende Parameter sind immer mitzuberücksichtigen:

  • Bodeneigenschaften wie insbesondere Wärme- und Wasserhaushalt, Bodenstruktur, Humusmenge, mikrobielle Aktivität, Durchwurzelbarkeit und Durchwurzelungsdichte
  • Immer zur gleichen Jahreszeit beproben!
  • Zeigerpflanzen berücksichtigen
  • visuelle Diagnose von Nährstoffmangel- und –überschusssymptomen
  • evtl. Pflanzenanalysen 
  • Hoftor- oder Schlagbilanzen können zusätzlich wichtige Informationen liefern
Möglichkeiten und Grenzen der chemischen Bodenuntersuchung hier klicken

Ziel der Bodenuntersuchung ist es, einen Überblick über den Nährstoffzustand der landwirtschaftlich genutzten Böden zu bekommen. Auf der Basis von Bodenuntersuchungsergebnissen werden kulturartenspezifische Düngeempfehlungen abgegeben mit dem Ziel die Bodenfruchtbarkeit zu steigern.

Im Rahmen der routinemäßigen Bodenuntersuchungwerden bei Grünlandböden die Proben aus der Tiefenstufe 0-10 cm und bei Ackerböden aus der Tiefenstufe 0-20 cm gezogen. Die entnommenen Bodenproben müssen repräsentativ für den Boden der beprobten Fläche sein. Auf jeder Fläche sollten mindestens 25 Einzelproben zu einer Mischprobe vereinigt werden. Die Probenahme kann grundsätzlich während des gesamten Jahres erfolgen. Allerdings sollte die letzte Ausbringung mineralischer Dünger mindestens 1 Monat und die letzte Ausbringung organischer Düngemittel etwa 2 Monate zurückliegen.

Die Bodenparameter, die zur Bewertung des Nährstoffzustandes der landwirtschaftlich genutzten Böden herangezogen werden, sind hauptsächlich der pH-Wert sowie der Phosphor- und Kalium-Gehalt. Der Phosphor- und Kalium-Gehalt im Boden wird mit der Calcium-Acetat-Lactat-Methode (CAL-Methode) bestimmt. Zur Interpretation der Bodenuntersuchungsergebnisse werden die Analysenwerte getrennt für Ackerland und Grünland den entsprechenden Gehaltsklassen (A bis E) und Versorgungsstufen (sehr niedrig bis sehr hoch) zugeordnet und daraus Düngeempfehlungen abgeleitet.

Die chemische Bodenanalyse ist geeignet zur allgemeinen Charakterisierung des Bodens und des Pflanzenstandortes. Sie ist auch ein wertvolles Mittel, um einen Überblick über den Versorgungsgrad der landwirtschaftlich genutzten Böden mit Nährstoffen zu bekommen. Auf Grund der Daten aus den chemischen Bodenanalysen können verschiedene Acker- und Grünlandböden im Hinblick auf ihren Nährstoffgehalt im Oberboden miteinander verglichen werden, unter der Voraussetzung dass dieselbe chemische Untersuchungsmethode verwendet wurde und die Probenahme einheitlich erfolgte. Bei einer korrekten, sorgfältig und kontinuierlich in bestimmten Zeitabständen durchgeführten Probenahme können aus den Analyseergebnissen Trends der Veränderung des Nährstoffgehaltes im Oberboden festgestellt werden. Im Rahmen der routinemäßigen Bodenuntersuchung wurde aus allen österreichischen Naturräumen bereits eine sehr große Zahl an Daten mit einheitlichen Analysemethoden erhoben, sodass eine Bewertung der einzelnen Bodenuntersuchungsergebnisse durch Vergleich mit einem großen Datenmaterial möglich ist.

Als ausschließliches Kriterium für die Ermittlung des Düngerbedarfs und die Ableitung von Düngeempfehlungen reicht die chemische Bodenanalyse aus mehreren Gründen nicht aus.

Die wichtigsten Gründe sind:

  1. Bei der routinemäßigen Bodenuntersuchung wird nur der Feinboden (Durchmesser kleiner 2 mm) beprobt. Vor allem Grünlandböden können aber einen hohen Skelettgehalt (Grobanteil) aufweisen und die Gründigkeit kann gering sein. In beiden Fällen wird das routinemäßig ermittelte Nährstoffangebot für die Pflanzenwurzeln deutlich überschätzt. Daher sollten die Nährstoffgehalte (mg pro kg) auch in Nährstoffmengen (kg pro Hektar) im durchwurzelten Boden umgerechnet werden, insbesondere bei sehr flachgründigen und skelettreichen Böden. Dazu müssen aber die Lagerungsdichte, der Skelettgehalt (Grobanteil) und die Mächtigkeit des durchwurzelten Bodenraumes bekannt sein.
  2. Für Routineuntersuchungen werden die Bodenproben nur aus dem Oberboden (0-10 cm im Grünland, 0-20 cm im Ackerland) entnommen, weil die Pflanzenwurzeln den Großteil der Nährstoffe daraus aufnehmen. Allerdings tragen auch die Nährstoffgehalte im durchwurzelten Unterboden zur Nährstoffversorgung der Pflanzen bei, insbesondere in niederschlagsarmen Vegetationsperioden. Vom Nährstoffgehalt im Oberboden kann nicht auf die Nährstoffsituation im Unterboden geschlossen werden.
  3. Stickstoff ist für die Pflanzen mengenmäßig das wichtigste Nährelement und bestimmt daher maßgeblich ihr Wachstum. Der pflanzenverfügbare Stickstoffgehalt im Boden kann mit routinemäßigen bodenchemischen Analysemethoden nicht hinreichend genau bestimmt werden. Die Nmin-Methode dient gelegentlich als Basis für Stickstoff-Düngeempfehlungen. Mit dieser Methode kann aber nur die Menge an anorganischem Stickstoff im Boden zum Zeitpunkt der Probenahme abgeschätzt werden. Die für Düngeempfehlungen viel wichtigere Stickstoff-Mineralisierung (Nachlieferung) während der Vegetationsperiode hingegen kann mit den routinemäßigen Bodenanalysemethoden nicht befriedigend bestimmt werden.
  4. Die Bodenmikroorganismen haben eine große Bedeutung für die Freisetzung von potenziell pflanzenverfügbaren Nährstoffen im Boden. Insbesondere die Verfügbarkeit von Stickstoff, Phosphor und Schwefel wird stark von der Aktivität der Mikroorganismen im Boden bestimmt. Bodenmikrobiologische Kennwerte werden in der Düngerberatung allerdings nur sehr selten berücksichtigt, weil die hierfür notwendigen mikrobiologischen Untersuchungsmethoden meist nicht routinemäßig angeboten werden oder relativ teuer sind.
  5. Im Rahmen der routinemäßigen Bodenuntersuchung wird nur der Gehalt des Bodens an einigen wenigen Nährstoffen (meistens Phosphor und Kalium) bestimmt. Zwischen dem Nährstoffgehalt im Boden und der Aufnehmbarkeit dieser Nährstoffe durch die Pflanzen muss keine Beziehung bestehen. Ein Überschuss an Kalium im Boden beispielswiese kann die Magnesium-Aufnahme der Pflanzen stark behindern. Das Ertragspotenzial eines Standortes wird nur dann voll ausgeschöpft, wenn die Nährstoffe im Boden in ausreichenden Mengen und in einem harmonischen Verhältnis pflanzenverfügbar sind. Daher sollten bei der Interpretation der Bodenuntersuchungsergebnisse neben den Nährstoffgehalten immer auch die Nährstoffverhältnisse im Boden berücksichtigt werden.
  6. Die räumliche Variabilität einzelner Bodenkennwerte ist manchmal sehr groß. Viele Gründe können dafür verantwortlich sein. Das Ausgangsmaterial für die Bodenbildung, der Bodentyp, die Bodenart, der Humusgehalt, der Grobsteingehalt und die Gründigkeit können kleinräumig wechseln. Natürliche Nährstoffanreicherungszonen sind Mulden, Unterhänge oder Hangfußlagen. Auch eine ungleichmäßige Düngerverteilung auf der Grünland- oder Ackerfläche kann im Oberboden zu kleinräumigen Unterschieden im Nährstoffgehalt führen. Die räumliche Heterogenität ist vor allem in Dauerweiden sehr ausgeprägt. Die Entnahme von Bodenproben erfordert daher besondere Sorgfalt. Die Probenahmefläche, auf der Einzelproben entnommen und zu einer Mischprobe vereinigt werden, sollte hinsichtlich Geländeform, Boden und Pflanzenbestand homogen sein. Die Nährstoffanreicherungszonen sollten bei der Bodenprobenahme ausgelassen oder getrennt von der restlichen Fläche beprobt werden.
  7. Auch die zeitliche Variabilität einzelner Bodenkennwerte ist manchmal sehr groß. Der Gehalt des Bodens an potenziell pflanzenverfügbaren Nährstoffen weist während der Vegetationszeit in der Regel starke zeitliche und saisonale Schwankungen auf. Die Nährstoffgehalte können auch von Jahr zu Jahr auf derselben Fläche beträchtlich variieren. Hauptverantwortlich dafür sind die Witterungsverhältnisse. Die Nährstoffaufnahme der Pflanzen bewirkt ebenfalls saisonale Schwankungen einzelner Nährelemente im Boden. Die Bodenuntersuchungsergebnisse gelten auf Grund der zeitlichen Variabilität einzelner chemischer Bodenparameter meist nur für den Zeitpunkt der Probenahme. Eine chemische Bodenanalyse liefert daher oft nur Informationen über einen „Augenblickszustand“. Anstelle einer einmaligen Untersuchung des Bodens im Hinblick auf potenziell pflanzenverfügbare Nährstoffe wären daher für die Ableitung von Düngeempfehlungen Probenahmen während der gesamten Vegetationsperiode notwendig. Dies ist aber aus Zeit- und Kostengründen in der Praxis nicht durchführbar.
  8. Auf Grund des CAL-löslichen Phosphor-Gehaltes im Oberboden werden Phosphor-Düngeempfehlungen abgegeben. Die CAL-Methode unterschätzt die Phosphor-Verfügbarkeit in Böden mit hohem Karbonat-Gehalt. Mit der CAL-Methode wird der CAL-lösliche Phosphor-Pool im Boden erfasst. Dieser beträgt in Grünlandböden nach derzeitigem Kenntnisstand etwa 3 % vom Phosphor-Gesamtgehalt. Somit ist nur ein sehr kleiner Teil des gesamten Phosphor-Vorrates im Boden mit der CAL-Methode extrahierbar. Zumindest in Grünlandböden wird der Phosphor zum Großteil in der organischen Substanz des Bodens gespeichert. Der organisch gebundene Phosphor ist daher eine wesentliche potenzielle Phosphor-Quelle für die Pflanzen und kann durch eine intensive Tätigkeit der Bodenmikroorganismen mobilisiert werden. Mit der CAL-Methode wird der organisch gebundene Phosphorallerdings nicht erfasst. Auf Grund des CAL-löslichen Phosphor-Gehaltes ist eine qualitative Bewertung des Phosphor-Versorgungszustandes von Böden möglich (gut – schlecht).
  9. Auch bodenphysikalische Eigenschaften können ertragsbegrenzende Faktoren sein (Wassermangel, Luftmangel, hoher mechanischer Eindringwiderstand für Pflanzenwurzeln). Bodenphysikalische Parameter werden im Rahmen der routinemäßigen Bodenuntersuchung normalerweise nicht erfasst. Der Bodenwasserhaushalt beispielsweise beeinflusst sehr wesentlich die Mobilität und Pflanzenverfügbarkeit der Nährelemente im Boden. Trockenheit bedeutet daher auch Nährstoffmangel für die Pflanzen.
  10. Der problematischste Punkt jedoch ist, dass mittels chemischer Bodenanalyse lediglich der potenziell verfügbare          Nährstoffgehalt im Boden bestimmt werden kann. Ob diese Nährstoffe auch tatsächlich pflanzenaufnehmbar sind, kann nicht festgestellt werden. Die Pflanzenverfügbarkeit der Nährelemente im Boden und die Nährstoffaufnahme der Pflanzen hängen nämlich von vielen Faktoren ab. Sie werden in erster Linie von der Nährstoffkonzentration im Bodenwasser, vom Bodenwassergehalt und von der Kapazität des Bodens zur Nährstoffnachlieferung (mobilisierbarer Nährstoffvorrat) beeinflusst. 
    Generell ist die Nährstoffanlieferung zu den Pflanzenwurzeln und folglich die Verfügbarkeit umso größer, je höher der Wassergehalt im Boden und die Nährstoffkonzentration im Bodenwasser sind. Entscheidend für die Nährstoffaufnahme sind aber auch Pflanzenfaktoren wie beispielsweise Wurzelausscheidungen (mobilisieren Nährstoffe im wurzelnahen Boden), Wurzelwachstumsrate, Größe der aufnahmeaktiven Wurzeloberfläche oder Wurzellänge. Je größer die Wurzeldichte (Anzahl von Feinwurzeln pro m² Boden) im Boden ist, desto höher ist auch die Nährstoffausbeute der Pflanzen. 
    Auch Mykorrhizapilze erhöhen die räumliche Verfügbarkeit der Nährstoffe im Boden und verbessern damit die Nährstoffversorgung der Wirtspflanzen auf nährstoffarmen Böden. Die chemische Bodenanalyse liefert hauptsächlich einen Hinweis für die Kapazität eines Bodens den Pflanzen Nährstoffe zu liefern (chemische Verfügbarkeit), aber sie berücksichtigt nicht die Mobilität (räumliche Verfügbarkeit) der Nährstoffe im Boden. Daher reicht eine routinemäßige Bodenuntersuchung für die Charakterisierung der Nährstoffversorgung der Pflanzen in der Regel nicht aus.

Zitierte und weiterführende Literatur:

Bergmann, W., 1993: Ernährungsstörungen bei Kulturpflanzen. Gustav Fischer Verlag, 835 S.

Larcher, W., 1994: Ökophysiologie der Pflanzen. Ulmer Verlag, 394 S.

Mäder, P., M. Koller, A. Kranzler und T. Lindenthal, 2008: Bodenuntersuchungen im Biobetrieb. BIO AUSTRIA und FIBL. Merkblatt Bodenuntersuchungen im Biobetrieb 2004, aktualisiert 17.3.2008, 8 S.

Mengel, K., 1991: Ernährung und Stoffwechsel der Pflanze. Gustav Fischer Verlag, 466 S.

Richtlinien für die sachgerechte Düngung, 2006: Anleitung zur Interpretation von Bodenuntersuchungsergebnissen in der Landwirtschaft. 6. Auflage, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 80 S.

Andreas Bohner

Das könnte dich auch interessieren!

Kommentar verfassen